An introduction to ship stability

From Shipbucket Wiki
Revision as of 19:35, 17 April 2022 by Acelanceloet (talk | contribs) (Stability while afloat at the surface)
Jump to: navigation, search

--- Coming soon ---

--- work in progress below ---

Note: there may be words and definitions which might not be familiar to everyone in this article. Please take a look at the bucketeers glossary Bucketeers Glossary or contact acelanceloet on discord or by forum pm if any questions remain (which I will then answer and add to the bucketeers glossary)

This article is written by J. Scholtens / acelanceloet to provide some insight in the stability of ships, how it impacts ship design and how to use some simple calculations and estimations to see if your shipbucket drawing would stay upright, safe and comfortable. Each section is in theory independent, you can read just the section of what you want to do (for example, estimate the center of gravity of an real ship so you can compare it with your AU design) but to fully understand what you are doing and why it works, it may be required to read the sections above it. That way, I hope that this article will be useful for the people who want to do full calculations, but also for the people who just want to do a quick estimate if their ship works. Unless stated otherwise, I will be using SI units (mostly meters).

Currently, this article remains a work in progress. Reach out to me on discord or on the forums in case you have corrections or questions.

Definitions

  • The ship: the floating object we are doing these calculations for. I will be using ship, but a boat, bouy, submarine or a pontoon of course follows the same rules.
  • 'K' : The zero point for the Metacentric height calculation. It can be chosen to be any point, as long as it is constant in the calculations. Normally, it is kept at the bottom of the ship, the keel, which is why the K is chosen for it's abbriviated form.
  • 'G' : The Center of Gravity of the ship, or in other words the balancing point of all weights on the ship combined.
  • 'B' : The Center of Bouyancy of the ship. This is the center of gravity of the water displaced by the ship, or in other words the centerpoint of the underwater volume of the ship.
  • 'V' : The volume of the ship. Following archimedes' law, this is equal to the weight of the ship divided by the density of the water.
  • 'KG' : The distance between K and G in vertical direction.
  • 'KB' : The distance between K and B in vertical direction.

Archimedes' law: Why objects float

There is a direct relation between submerged volume and weight of an object. If a bucket of water is filled to the brim and a floating object is put in, some water will flow over the edge of the bucket. Interestingly, the weight of this water will be the same as that of the floating object. Due to the fact that the density of water is known, a relation between the displaced water and the submerged volume of the object can also be found. Because the floating object 'displacing' the water that otherwise would be in that location, a ships weight is often stated as displacement

The resulting formula is:

  • displacement = underwater volume * water density

or in symbols

  • Δ = V * ρ

Water density is 998 kg/m3 for fresh water and 1025 kg/m3 for salt water. Due to the closeness to 1000 of both values, for estimations displacement in cubic metres is often stated as being equal to displacement in metric tons. This of course isn't valid in detailed calculations, although for fresh water it is considered close enough in many cases.

Using Archimedes' law the submerged volume of a ship can be found if the weight is known, or a weight can be found when the volume is known.

The simple case: Stability of an submerged object

Below the surface of the water, stability is relatively simple. The best example of this case is an submarine. In an object completely submerged in a single medium, it will be stable if the center of gravity is directly below the center of bouyancy. If the object starts to slant, the center of gravity moves to the side of the center of bouyancy, creating an counterforce that gets bigger the more the larger the angle of the object becomes. This counterforce reaches zero when the angle returns to zero. In that essence, the further below the center of gravity is below the center of bouyancy, the larger this counterforce becomes with every angle.

Submarines are well known for their uncomfortable motions at the surface. This can be explained when looking at the characteristics of objects floating at the surface.

Stability while afloat at the surface

On the surface, the stability of an floating object follows the same laws as below the surface with one addition: the shape of the objects submerged volume changes as the object gets an angle. one side is lifted out of the water while the other is pushed deeper into it. The center of gravity moves over a bit to the low side, but the center of bouyancy does so too due to the loss of volume at the high side and the increase of volume at the low side. In other words: at the surface, as long as the shape of the waterline remains the same, the bigger the angle gets, the more the objects volume starts counteracting. So, a ship at the surface is a lot more stable then a submerged object.

To find out how stable, we have to do some calculations, which can be found in the next paragraph. We can however do some simple estimations:

  • The lower the center of gravity, the higher the stability
  • The lower the volume relative to the waterline area, the higher the stability.
  • The higher the center of bouyancy, the higher the stability.
  • The larger the ships beam, the larger the ships stability.

Calculating the metacentric height

  • GM = BM + KB - KG
  • BM = Iwp / V

The stability curve

Stability requirements

Estimating the center of gravity of an existing ship using the stability

Rules of thumb for modifying a ships stability